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the hypersonic approximation 2H =~ u? at the edge of the
viscous layer in conjunction with p ~ T with s < 1. If the
shock wave is treated as a discontinuity, the proper boundary
conditions require that the shear stress at the shock wave
correspond to the vorticity due to shock curvature. This
condition cannot, in general, be imposed on a solution based
on the boundary layer equations and is not met here in the
region closest to the leading edge (§— 0) where, moreover, the
no-slip condition is invalid also. It may be noted that
(u du/Oy)s ~ p(x) (D2F,0Y2)y (2)V*,(x) decreases rapidly
with increasing £ and falls to zero for £ =~ 4 where, however,
the convergence of the series for (02F/0Y?), is rather poor.
An alternative treatment of the leading edge problem is
given by Street,® who proposes to satisfy boundary condi-
tions at infinity rather than at the shock wave, which appears
to imply that his flow model is not one in which the viscous
layer and the shock layer coincide.

Slip and temperature jump are negligible if £>> (y 4 1)s/
v. For a cold wall in the hypersonie limit (s— 0; ¢ = 1),
convergence of the series for pressure and velocity requires
that & < 10 approximately. The solution given here is
therefore valid in h,/H. <« Re/M? < 10vy/(v + 1) or for
x =~ O(M?).
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Optimization of Stochastic Trajectories
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Nomenclature

a,a; = weighting factors in payoff function

as

>

thrust per unit initial mass

vector function of ( ) .

matrix of partial derivatives of f with respect to y,Fy=
of 1/dy;

gravitational acceleration

matrix of partial derivatives of f with respect to z,Gy; =
of i/oz

measurement inference matrix; converts state vector
to expected measurement vector

gain matrix for estimator

mass

covariance matrix of uncertainty in state vector

covariance matrix of uncertainty in control vector

covariance matrix of uncertainty in measurement vector

time

horizontal velocity

2
i

It i

S WONWI R I @

I 1

Received by ARS November 30, 1962. This research was
supported by the U. S. Air Force through the Office of Scientific
Research of the Office of Aerospace Research, under Contract
No. AF 49(638)-363. The work was performed under the super-
vision of R. L. Halfman of the Department of Aeronautics and
Astronautics, Massachusetts Institute of Technology.

* Research Engineer, Division of Aerospace Research, Mem-
ber ATAA.

T Research Assistant, Division of Aerospace Research, Mem-
ber ATAA.

1 Mathematician, Division of Aerospace Research.

VOL. 1, NO. 4

vertical velocity
measurement vector

altitude

state vector {y,0,u}
uncertainty in state vector
control vector {b,0}
uncertainty in control vector
fractional mass flow per second
perturbation

increment

matrix of adjoint variables
transition matrix for &
standard deviation

payoff quantity

thrust angle, measured from horizontal
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Subscripts

d
0
1

final descent phase
initial (ignition) time
final (end of main phase) time

[

Superscripts

time derivative
matrix transpose
matrix inversion
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Introduction

N recent years, much study has gone into the problems of
trajectory optimization'=3 and the problem of optimal
control around a reference trajectory. The control analyses
are linearized; hence their application to extremal trajectories
gives indeterminate results. This has led to the formulation
of second-order optimal control theory.® These analyses are
based on deterministic situations; that is, the state of the
system is known, and control changes can be applied exactly.
Real problems, however, are not deterministic. The state
only can be inferred from a possibly incomplete set of noisy
measurements, and the control variables themselves are
subject to random variation. This fact has led to the
formulation of optimum linear filters.5§

Unfortunately, this acceptance of the true, stochastic
nature of the problem always has come after the reference
trajectory has been chosen. For some operational criteria
this is correct, but if the criterion for choice is the optimality
of the trajectory, and if the performance is affected by the
statistics of the situation, the effect of the statistics should
be incorporated into the optimization procedure. The
problem cannot be discussed in generality but must be illus-
trated through a specific example.

As an example, the authors have examined the problem of
achieving a soft landing on the moon, which was considered
deterministically in Ref. 7. Such a trajectory very likely will
consist of two phases: first a main phase during which
most of the energy of the vehicle is dissipated, followed by a
terminal phase in which the vehicle descends slowly to touch-
down. This second phase is less efficient at energy dissipa-
tion than the main phase; hence it should begin at as low an
energy level as is feasible. However, the transition point
must be tied to the uncertainty in the altitude and velocity
of the vehicle. Thus it is apparent that a main-phase tra-
jectory that reduces uncertainties can reduce terminal phase
propellant consumption and, in fact, can reduce the total ex-
pected propellant consumption if the main phase consump-
tion is not affected seriously. A more detailed presentation
of this work is given in Ref. 8.

Equations of Motion and the Filter

The vehicle is assumed to be a constant thrust rocket mov-
ing in a uniform, parallel gravity field, with no other external

§ In Ref. 6, Kalman has shown that the optimal linear control
and the optimal linear filter are duals.
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forces. The equations of motion are

g =
[bsing/(1 — yt)] — ¢
b cosf/(1 — i)

9

It

U
or, in matrix form,
y = ¥z, €]
and the linearized perturbation equations are
8y = F6Y + GoZ

where boldface characters are used to indicate matrices,
including vectors. The trajectory uncertainty is estimated
by a model of the perturbation equations with a correction
due to the difference between the value of 8y predicted from
previous information and the value inferred from current
measurements:

Y = FY + GZ + K[X — HY]

Such a system is shown in Fig. 1. According to Kalman,®
the optimal gain matrix K is

K = PH'R™

and the differential equation for the propagation of the
covariance matrix of the error in the state vector y is

P=FP+PF —PH'R'HP+GQG' (2

The trajectory desired is that one which minimizes the total

Fig. 1 Diagram of estimator

expected propellant consumption. As an approximation to
this, the payoff quantity to be minimized was chosen as

¢ = (bt — to) + o P -+ a3 Pas + @z Pgsli=s,

The first term represents the main phase propellant con-
sumption, since b is nominally constant. The other three
terms represent a weighted sum of the variances of each of the
three state variables (y,,u). By suitable choices of the
weighting factors, ¢ can be made to vary, at least over a small
range, in the same way as total propellant consumption.

Optimization Process

The process used in finding the optimal trajectory is the
steepest ascent process.> The basic process will not be dis-
cussed. However, a modification in the operational tech-
nique was used in the study. The usual procedure? requires
integration of the adjoint equations backward along a nomi-
nal, nonoptimum trajectory to evaluate the necessary change
in the steering program. This requires storage of sufficient
information at points spaced closely enough to permit accurate
integration. As an alternative to storing this data, it was
felt preferable to generate it as the adjoint equations are in-
tegrated. The known values of the adjoint variables are at
the end point, which is why the adjoint equations usually
are integrated backwards. In the present problem, how-
ever, it is not feasible to integrate the state equations back-
ward, because the variance equation (2) is unstable in that
direction. Instead, the transition matrix concept is used
to anticipate the necessary initial values of the adjoint vari-
ables, thus permitting forward integration.
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Consider a set of linear differential equations:
%= ~F 3)

If A(ty) = I, the identity, yields A() = A(Lty), then, because
of the superposition principle of linear equations, A(ty) = %o
must vield A() = A(L)d. This fundamental matrix
A(t,fy) is the transition matrix for the set of linear equations.
In this case, the adjoint equations are of this form. Thus
the transition matrix A(f,t) can be found by a forward
integration, and, with a desired final value of X, the necessary
initial value can be found from

Alte) = A7ty to)M(t) 4)

In this procedure, then, the state equations (1) and (2) and
the adjoint equations (3) are integrated forward, the former
from the known initial conditions and the latter from an
identity. With the final value of the transition matrix, the
desired initial adjoint matrix is found from the state transi-
tion equation (4). Then the full set of equations is integrated
forward again, this time with the new initial adjoint matrix.
This second integration is equivalent to the backwards
integration of the usual procedure, and the necessary informa-
tion for improving the trajectory is derived from it.

Assumptions and Results

For this example, the vehicle was assumed to have the
capability of measuring its altitude and both velocity com-
ponents relative to the surface directly beneath it; hence
the measurement inference matrix H is an identity. The
errors in the measurements were assumed to have no cross-
correlation; thus the inverse of the measurement covariance
matrix is

1/ oy’ 0 0
R = 0 1/ 0 0
0 0 1/0'u2

This matrix is 2 measure of the certainty of the measurements.
A zero in one of the diagonal elements is equivalent to infinite
uncertatnty, which is a simple way of eliminating the meas-
urement of any of the variables. The noise in the control
system also was assumed to have no cross-correlation. Only
the diagonal elements, 03> and 4%, are nonzero.

A vehicle was chosen with the following dynamic char-
acteristics: b = 31.8 ft-sec™2, v = 0.0025 sec*. For the
following boundary conditions:

9o = 289,800 ft =0
vy = —2283 ft-sec™! v =0
U = 8147 ft-sec™! w =0

and with the assumption of 5.3 ft-sec—2 as the lunar gravity,
the optimum (deterministic) steering program yielding
minimum propellant consumption is

tanf = 0.5 + 0.001¢

The burning time required is 200 sec. This was used as the
initial nominal trajectory for the optimization.

The errors in the estimate of the initial state were assumed
to be represented by Py = 104 {t2, Py = P = 100 ft?-sec™2.
These values are not very important because of the ex-
ponential nature of the variance equation (2). More im-
portant is the noise in the measuring system, which was as-
sumed to have

gyt = 10% 4 1076 y2 ft2
g, = 100 + 1074 0?2 ft2-gec2
.2 = 100 4+ 104 42 ft2-gec 2
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Table 1 Performance of trajectories
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No. Description ity Py Py, Py a = 0.167 a = 10
1 Nominal; all measurements 200.0 796.1 5.2 - 8.3 603.5 24768.3
2 Optimal for @, = 0.167; all
measurements 200.46 787.2 5.0 8.6 601.5
3 Optimal for a1 = 10; all
measurements 200.69 785.0 5.0 8.7 s 24634.9
4 Nominal; measure y 200.0 1110 7.3 159.2 580.5 .
5 Optimal for a; = 0.167;
measure y 201.67 1098 6.9 159.7 569.4
The fixed terms are a guess at the effect of the surface rough- or

ness directly below the vehicle. The noise in the control
system was assumed to have ¢, = 0.64 ft?-sec ™ and o =
104,

The effect of the weights given to the uncertainty terms
was found by assuming them to be in the arbitrary ratio
1:160:100 and scaling them up or down together. Some
results with the full set of measurements are shown as tra-
jectories 1, 2, and 3 in Table 1. Note the small changes in
the variances. The steering programs are shown in Fig. 2.

The effects of simpler measuring equipment were found
by assuming o, and ¢, to be infinite, leaving only the meas-
urement of altitude. In addition, the weight given to the
variance of horizontal velocity was set equal-to zero, since, in
the parallel field, with only y being measured, there is no way
to infer the horizontal velocity from the measurements.
The results of this are in Table 1 as trajectories 4 and 5, and
the steering programs are shown in Fig. 2.

The values of a; used in the foregoing are arbitrary. To
talk in terms of overall optimization, one must find values of
a; which correctly represent the trade-off between uncer-
tainty and propellant during the final descent phase. Con-
sider

m = m(ty — t, Pn)
from which
Am/m = Aty + (1/m)(@m/OPu)APy
This is the same as A¢ if one neglects Py, and Pss and sets
a; = (1/m)(Om/OPy;)

Now, if the vehicle makes its final descent from y = 3(Py) /2
at velocity vq,

Amg = ma lq = mal3(Pn)1%/v4]
Thus

bm/DPu = 3md/20d(P11)1/2

0.7

0.6
o5
® o4
-
Z
uf
v 03
E NomiINAL STEERING PrRoGRAM
k= oz @ OpTiMAL, 2,167, ALt MEASUREMENTS
) @ OoPrimaL, &, =10 ,AtL MEASUREMENTS
@ OprivvaL, &, =167, MEASURE ALTITUDE
ol

N T O N I O
-200 -180 -/60 ~140 =120 -/0C -80 -60 -40 =20 o]
7ime — SEeEcCoONOS

Fig. 2 Optimal steering programs

ay = {(rha/m)[3/204(P1)V?]

From the nominal trajectory, Py, = 787, ma/m = 3%, and
with vg == 10 fps, &, =2 0.00045.

Thus, for this example, unless the noise level is consider-
ably larger than assumed here, the inclusion of the statistics
isunimportant. However, the technique has been shown here
to be feasible and is now available for more sensitive situations,
such as atmospheric entry.
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HIS note is concerned with the thermoelastic stress-
strain relations in a heterogeneous aeolotropic plate theory
that is based on the Euler-Bernoulli hypothesis.
Consider a thin elastic plate of constant thickness 4 which
is heterogeneous in the thickness direction z. Let x, y be the
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